

Head Office: 2nd Floor, Grand Plaza, Fraser Road, Dak Bunglow, Patna - 01

JEE Main 2023 (Memory based)

29 January 2023 - Shift 2

Answer & Solutions

PHYSICS

- **1.** A force F = -40x acts on a mass of 1 kg. x is the position of the mass. If maximum speed of the mass is 4 m/s, find the amplitude. All parameters are in *SI* units.
 - A. $\frac{1}{\sqrt{10}}m$ B. $\frac{2}{\sqrt{10}}m$ C. $\frac{3}{\sqrt{10}}m$ D. $\frac{4}{\sqrt{10}}m$

Answer (B)

Solution:

For SHM:

$$F = -kx \Rightarrow k = 40$$
$$v_{max} = A\omega = A\sqrt{\frac{k}{m}}$$
$$4 = A\sqrt{\frac{40}{1}}$$
$$A = \frac{2}{\sqrt{10}} m$$

2. Consider 2 inclined plane of same height. 1^{st} has a smooth surface & angle of inclination is 45° . Other has a rough surface & angle of inclination is 60° . If the ratio of time taken to slide on them is 'n'. Find coefficient of friction of rough inclined plane.

Answer (B)

 $a = g \sin \theta = \frac{g}{\sqrt{2}}$ $t = \sqrt{\frac{2l_1}{a}}$ $t = \sqrt{\frac{2\sqrt{2}h}{\frac{g}{\sqrt{2}}}}$ $t = \sqrt{\frac{4h}{g}}$

$$a = \left(\frac{g\sqrt{3}}{2} - \frac{\mu g}{2}\right) = g\left(\frac{\sqrt{3}}{2} - \frac{\mu}{2}\right)$$
$$t = \sqrt{\frac{l_2}{a}}$$
$$t = \sqrt{\frac{8h}{g(3 - \sqrt{3}\mu)}}$$

So,

$$\frac{t_1}{t_2} = \sqrt{\frac{3 - \sqrt{3}\mu}{2}} = n$$
$$3 - \sqrt{3}\mu = 2n^2$$
$$\mu = \frac{3 - 2n^2}{\sqrt{3}}$$

- **3.** A particle undergoing uniform circular motion about origin. At certain instant x = 2 m and $\vec{v} = -4\hat{j} m/s$, find velocity and acceleration of particle when at x = -2 m.
 - A. $\vec{v} = -4\hat{j}, \ \vec{a} = 8\hat{i}$
 - $\mathsf{B.} \quad \vec{v} = 4\hat{j}, \ \vec{a} = 8\hat{\imath}$
 - C. $\vec{v} = -4\hat{j}, \vec{a} = -8\hat{i}$
 - D. $\vec{v} = 4\hat{j}, \ \vec{a} = -8\hat{i}$

Answer (B)

Solution:

For uniform circular motion:

At
$$x = -2 m, v = 4\hat{j}$$

Acceleration towards the center is:

$$a = \frac{v^2}{r}$$
$$a = \frac{4^2}{2} = 8 m/s^2$$
$$\vec{a} = 8 m/s^2 \hat{\imath}$$

4. A man pulls a block as shown:

Consider the following statements:

- 1: Work done by the gravity on block is positive.
- 2: Work done by the gravity on block is negative.
- 3: If man pulls block with constant speed, then tension in the string equals to weight of the block.
- 4: None of the above.
- A. 2 and 3 only
- B. 4 only
- C. 4 only
- D. 1 only

Answer (A)

Solution:

Weight acts down and displacement is up, so work done by gravity is negative.

If speed is constant, acceleration is zero, hence tension is equal to weight.

 \Rightarrow Statement 3 is correct.

T - mg = maIf a = 0, T = mg

- **5.** *RMS* current in circuit (a) is I_a while *RMS* current in circuit (b) is I_b then:
 - A. $I_a > I_b$ B. $I_a < I_b$ C. $I_a = I_b$ D. none of the above

Answer (A)

Solution:

Impedance for circuit (a) and (b):

$$Z_a = 4 \Omega \text{ and } Z_b = \sqrt{(4^2 + (5 - 3)^2)} \Omega = \sqrt{20} \Omega$$
$$I_a = \frac{220}{4} \quad and \quad I_b = \frac{220}{\sqrt{5}}$$
$$I_a > I_b$$

6. Find truth table:

Α.	В.	С.	D.
$\begin{array}{cccc} A & B & X \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{cccccc} A & B & X \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{ccccc} A & B & X \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{cccc} A & B & X \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$

Answer (D)

Solution:

$$X_1 = \overline{A}$$

- $X_3 = B.\overline{A}$
- $X_2 = \overline{B}$
- $X_4 = (\overline{AB})$
- $X = X_3 + X_4$
- $X = A\bar{B} + B\bar{A}$
- Y=output=XOR Gate

So, the correct answer is:

- A B X
- 0 0 0
- 0 1 1
- 1 0 1
- 1 1 0
- 7. Consider the following potentiometer circuit. When switch *S* is open, length *AJ* is 300 cm. When switch *S* is closed, length *AJ* is 200 cm. If $R = 5\Omega$, then find internal resistance *r* of the cell.

- Α. 4Ω
- Β. 2Ω
- C. 5 Ω
- D. 2.5 Ω

Answer (D)

Solution:

For both the cases: $C \times 300 = \epsilon \dots \dots (1)$ $C \times 200 = \frac{\epsilon}{R+r} \times R \dots \dots (2)$ $\frac{300}{200} = \frac{R+r}{R}$ $r = \frac{R}{2} = 2.5 \ \Omega$

- **8.** In a communication system, maximum voltage is 14 mV and minimum voltage is 6 mV. Find out the modulation index.
 - A. 0.2
 - B. 0.6
 - C. 0.4
 - D. 0.3

Answer (C)

Solution:

$$Index = \frac{V_{max} - V_{min}}{V_{max} + V_{min}}$$
$$= \frac{14 - 6}{14 + 6}$$
$$= 0.4$$

9. The gravitational potential due to a solid uniform sphere of mass *M* and radius *R* at a point at radial distance r (r > R) from its centre is equal to

A.
$$-\frac{GM}{r}$$

B.
$$-\frac{GM}{2r}$$

C.
$$-\frac{GMR}{r^{2}}$$

D.
$$-\frac{GM(R+r)}{r^{2}}$$

Answer (A)

Solution:

For outside point of solid sphere, $V = -\frac{GM}{r}$

10. Resolving power of compound microscope will increase with

- A. Decrease in wavelength of light and increase in numerical aperture.
- B. Increase in wavelength of light and decrease in numerical aperture.
- C. Increase in both wavelength numerical aperture.
- D. Decrease in both wavelength numerical aperture.

Answer (A)

Solution:

Resolving power of compound microscope $\propto \left(\frac{2n \sin \theta}{\lambda}\right)$

 λ = Wavelength of used light $n \sin \theta$ = Numerical aperture n = Refractive index of medium separating object and aperture

11. It is given that $x^2 + y^2 = a^2$ where, *a*: radius.

Also, it is given that $(x - \alpha t)^2 + \left(y - \frac{t}{\beta}\right)^2 = a^2$, where, *t*: time Then dimensions of α and β are

A. $[M^{0}LT^{-1}] \& [M^{0}L^{-1}T]$ B. $[M^{0}LT] \& [M^{0}L^{-1}T^{-1}]$ C. $[M^{0}LT] \& [M^{0}LT^{-1}]$ D. $[M^{0}L^{-1}T] \& [M^{0}LT]$

Answer (A)

Solution:

$$x = \alpha t = \frac{t}{\beta}$$

$$\Rightarrow L' = \alpha T' = \frac{T'}{\beta}$$

$$\Rightarrow \alpha = [LT^{-1}] \& \beta = [L^{-1}T]$$

- **12.** Assertion (A): *EM* waves are not deflected by electric field and magnetic field. Reason (R): *EM* waves don't carry any charge, so they are not deflected by electric field and magnetic field.
 - A. Both (A) and (R) are true and (R) is the correct explanation of (A)
 - B. Both (A) and (R) are true and (R) is not the correct explanation of (A)
 - C. (A) is true but (R) is false.
 - D. (A) is false but (R) is true.

Answer (A)

Solution:

EM wave does not have charge therefore they are not deflected by electric or magnetic field.

13. De-Broglie wavelength of a body of mass m and kinetic energy E is given by:

A. $\lambda = h/mE$

- B. $\lambda = \sqrt{2mE}/h$
- C. $\lambda = h/\sqrt{2mE}$
- D. $\lambda = \sqrt{h/2mE}$

Answer (C)

Solution:

$$\lambda_d = \frac{h}{p}$$
 and $p = \sqrt{2mE}$
 $\lambda_d = \frac{h}{\sqrt{2mE}}$

- **14.** In a region with electric field $30 \ i V/m$ a charge particle of charge $q = 2 \times 10^{-4} C$ is displaced slowly from (1,2) to origin. The work done by external agent is equal to
 - A. 1 mJ
 B. 6 mJ
 C. 2 mJ
 D. 3 mJ

Answer (B)

Solution:

F = qE= 2 × 10⁻⁴ × 30 N Work Done = 6 × 10⁻³ × 1 J Work Done = 6 mJ

15. At 300 *K*, RMS speed of an ideal gas molecules is $\sqrt{\frac{\alpha+5}{\alpha}}$ times the average speed of gas molecules, then value of α is equal to (take $\pi = 22/7$)

Answer (28)

Solution:

$$v_{rms} = \sqrt{\frac{3RT}{M_0}}$$

$$v_{avg} = \sqrt{\frac{8RT}{\pi M_0}}$$

$$\frac{v_{rms}}{v_{avg}} = \sqrt{\frac{3\pi}{8}} = \sqrt{\frac{33}{28}} = \sqrt{\frac{28+5}{28}}$$
So, $\alpha = 28$

16. An α particle and a proton are accelerated through same potential difference. The ratio of de - Broglie wavelength of α particle to proton is equal to $1/\sqrt{x}$. Value of x is Take $m_{\alpha} = 4m_{proton}$

Answer (8)

Solution:

$$\lambda = \frac{h}{p}$$

$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mqV}}$$

$$\frac{\lambda_{\alpha}}{\lambda_{p}} = \sqrt{\frac{m_{p}q_{p}}{m_{\alpha}q_{\alpha}}} = \sqrt{\frac{1}{4} \times \frac{1}{2}} = \frac{1}{\sqrt{8}}$$

$$x = 8$$

17. Time period of rotation of a planet is 24 *hours*. If the radius decreases to $\frac{1}{4}th$ of the original value, then the new time period is *x* hours. Find 2*x*.

Answer (3)

Solution:

We know, $I\omega = constant$

$$\Rightarrow I_1 \omega_1 = \frac{I_1}{16} \omega_2$$
$$\Rightarrow \omega_2 = 16\omega_1$$
$$\Rightarrow T_2 = \frac{T_1}{16} = 1.5 \text{ hours}$$
$$\Rightarrow 2x = 3 \text{ hours}$$

18. A projectile is fire with velocity $54 \ km/hr$ making an angle 45° with horizontal. Angular momentum of this particle of mass $1 \ kg$ about the point of projection one second into the motion will be $\frac{5N}{\sqrt{2}}$ in SI units ($g = 10 \ m/s^2$). Find the value of *N*.

Answer (3)

Solution:

 $u = 54 \ km/hr = 15 \ m/s$ Torque at time t is $\tau = mgu \cos \theta t$ $\frac{dL}{dt} = \tau$ $\int_{0}^{L} dL = \int_{0}^{1} mgu \cos \theta t dt$ $L = \frac{mgu \cos \theta}{2} = \frac{10 \times 15}{2\sqrt{2}} = \frac{75}{\sqrt{2}} \ kg \ m^{2}/sec$ Comparing with $\frac{5N}{\sqrt{2}} \Rightarrow N = 15$

Answer (5)

Solution:

When Force is removed, let velocity of block is v.

$$v = \frac{50}{10} = 5m/s$$

For first 20 seconds, Impulse, Ft = mv $F \times 20 = 20 \times 5$ F = 5 N

